中國科學(xué)院上海天文臺(tái)博士研究生入學(xué)考試大綱
《測(cè)量平差》
測(cè)量平差是天文領(lǐng)域的重要專業(yè)基礎(chǔ),是大規(guī)模海量天文測(cè)量數(shù)據(jù)處理的必備技能。本課程主要以“誤差理論與測(cè)量平差基礎(chǔ)”中的內(nèi)容為主,兼顧廣義測(cè)量平差的內(nèi)容,考察平差基本技能和處理復(fù)雜平差問題的能力。
一、考試內(nèi)容
(一)測(cè)量平差基礎(chǔ)
1. 最小二乘原理及其準(zhǔn)則函數(shù)
2. 間接平差、條件平差及其模型的建立
3. 附有限制條件的間接平差法
4. 誤差傳播率以及內(nèi)外符合精度
5. 觀測(cè)值定權(quán)的基本策略
6. 平差結(jié)果的一般統(tǒng)計(jì)性質(zhì)
(二) 廣義測(cè)量平差原理
1. 多維正態(tài)分布的定義
2. 正態(tài)隨機(jī)向量的條件期望與條件方差的定義與性質(zhì)
3. 極大似然估計(jì)、極大驗(yàn)后估計(jì)、最小方差估計(jì)、線性最小方差估計(jì)的原理與準(zhǔn)則函數(shù)
4. 廣義最小二乘的原理及其與普通最小二乘估計(jì)準(zhǔn)則的區(qū)別和聯(lián)系
(三) 卡爾曼濾波模型
1. 卡爾曼濾波模型的主要組成部分
2. 狀態(tài)轉(zhuǎn)移矩陣的定義與性質(zhì)
3. 卡爾曼濾波模型的基本原理與估計(jì)準(zhǔn)則
4. 常速度與常加速度狀態(tài)方程的表達(dá)